Progressive AAM Based Robust Face Alignment
نویسندگان
چکیده
AAM has been successfully applied to face alignment, but its performance is very sensitive to initial values. In case the initial values are a little far distant from the global optimum values, there exists a pretty good possibility that AAM-based face alignment may converge to a local minimum. In this paper, we propose a progressive AAM-based face alignment algorithm which first finds the feature parameter vector fitting the inner facial feature points of the face and later localize the feature points of the whole face using the first information. The proposed progressive AAM-based face alignment algorithm utilizes the fact that the feature points of the inner part of the face are less variant and less affected by the background surrounding the face than those of the outer part (like the chin contour). The proposed algorithm consists of two stages: modeling and relation derivation stage and fitting stage. Modeling and relation derivation stage first needs to construct two AAM models: the inner face AAM model and the whole face AAM model and then derive relation matrix between the inner face AAM parameter vector and the whole face AAM model parameter vector. In the fitting stage, the proposed algorithm aligns face progressively through two phases. In the first phase, the proposed algorithm will find the feature parameter vector fitting the inner facial AAM model into a new input face image, and then in the second phase it localizes the whole facial feature points of the new input face image based on the whole face AAM model using the initial parameter vector estimated from using the inner feature parameter vector obtained in the first phase and the relation matrix obtained in the first stage. Through experiments, it is verified that the proposed progressive AAM-based face alignment algorithm is more robust with respect to pose, illumination, and face background than the conventional basic AAM-based face alignment algorithm. Keywords—Face Alignment, AAM, facial feature detection, model matching.
منابع مشابه
Active Wavelet Networks for Face Alignment
The active appearance model (AAM) algorithm has proved to be a successful method for face alignment and synthesis. By elegantly combining both shape and texture models, AAM allows fast and robust deformable image matching. However, the method is sensitive to partial occlusions and illumination changes. In such cases, the PCA-based texture model causes the reconstruction error to be globally spr...
متن کاملFace Alignment by 2.5D Active Appearance Model Optimized by Simplex
In this paper we propose an efficient algorithm to align the face in real time, based on Active Appearance Model (AAM) in 2.5D. The main objective is to make a robust, rapid and memory efficient application suitable for embedded systems, so they could align the pose rapidly by using less memory. Classical AAM is a high memory consumer algorithm, consequently transfer of this stored memory in an...
متن کاملFace alignment using active appearance model optimized by simplex
The active appearance models (AAM) are robust in face alignment. We use this method to analyze gesture and motions of faces in Human Machine Interfaces (HMI) for embedded systems (mobile phone, game console, PDA: Personal Digital Assistant). However these models are not only high memory consumer but also efficient especially when the aligning objects in the learning data base, which generate mo...
متن کاملRobust Face Recognition using AAM and Gabor Features
In this paper, we propose a face recognition algorithm using AAM and Gabor features. Gabor feature vectors which are well known to be robust with respect to small variations of shape, scaling, rotation, distortion, illumination and poses in images are popularly employed for feature vectors for many object detection and recognition algorithms. EBGM, which is prominent among face recognition algo...
متن کاملAAM Based HCI for an Intelligent Wheelchair
This paper proposes an active appearance model (AAM) based human computer interface (HCI) to control an intelligent wheelchair (IW), namely, RoboChair. Adaboost is applied as the face detection module, while AAM is used to undertake face tracking task. Inverse compositional image alignment is implemented to fit the trained AAM. Subsequently, an straightforward method is carried out to estimate ...
متن کامل